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Tone Filters for Electronic Organs 
by C E Pykett B Sc, Ph D  

Part 1 : Organ Tone Spectra & Source Waveforms  

As the organ is a sustained-tone instrument, achieving a satisfactory imitation of the steady-state acoustic 
emission of organ pipes is of paramount importance.  In this respect, the design of the  tone-forming filters is 
crucial, yet there is a curious absence of definitive material dealing with filter design. This is apparently 
reflected in the range of commercial instruments on the market:  with  few exceptions, their voicing seems to 
be mainly empirical.  

To derive a simple expression for the frequency response of a tone filter, consider the basic organ 
system, representative of a wide range of electronic instruments, shown in Fig.1.  The waveforms 
are initially derived from a continuously running tone generator.  Waveforms at various frequencies  
are selected by depressing  keys, and envelope shaping may be applied at the instants of  key  attack 
and release to simulate the transient phenomena of organ pipes.  (Whilst of considerable  
importance, transients are not further discussed here.)  The signals are passed through various tone-
forming filters depending on the stops or tone colours selected and the output from the filters is 
then finally amplified and fed to loudspeakers.  

 

Figure 1. Basic electronic organ system considered in this article is the subtractive kind in which an 
harmonically rich waveform is filtered.  

A tone filter may be thought of as an amplifier whose gain varies with frequency.  The gain can 
therefore be explicitly written as a function of frequency, G(f).  Similarly, each harmonically-rich 
waveform from the generators is equivalent to a large number of individual sine waves of different  
frequencies, each sine wave having a different amplitude.  This waveform can also be written as a 
function of frequency, say H(f).  Therefore the output from the tone filter, F(f), is the product of  
the input voltage and the gain just as with any amplifier: 

F(f) = G(f).H(f) 

In general, the tone filter will also modify the phase as well as the amplitude of each frequency 
component in the input signal.  As the ear is insensitive to relative phase for present purposes, this 
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does not matter, which makes the design of tone filters much easier than it would otherwise be!  It 
does mean, however, that the waveform emerging from the tone filter will not necessarily bear any 
resemblance to the waveform emitted by the organ pipe if both were to be viewed on an 
oscilloscope screen.  It is only the frequency spectra that need to be matched  as closely as possible. 

If  the frequency functions are expressed on a logarithmic amplitude scale then new functions are 
obtained that are related by addition rather than multiplication: 

P(f) = Q(f) + R(f) 

Rearranging this equation gives the frequency response of the tone filter, Q(f),  in terms of the input 
spectrum from the tone generator, R(f), and of the output spectrum, P(f): 

Q(f) = P(f) - R(f) 

This simple equation shows that filter design involves three basic steps.  First, the logarithmic 
spectrum of both the tone generator waveform and of the sound to be simulated must be available.  
Second, the frequency response of the required filter must be derived by subtracting one from the  
other.  Third,  the response so obtained has to be realised in hardware.  Subsequent sections discuss 
each of these stages in detail. 

Acoustic Spectra of Organ Tones 
Before a filter can be designed to imitate the sound of a particular type of organ pipe, the spectrum 
of that sound must be obtained.  Following a careful search of the scientific and engineering  
literature extending back into the 1930's, it was discovered that very few systematic investigations  
into the acoustic spectra of organ tones have been reported.  As this information is vital to the 
design of an imitative electronic instrument, three of the most useful references are appended here.  
(Refs 2,3 & 4).  Boner's article (1938) describes one of the first attempts to use electronic 
techniques to analyse the sound of an organ pipe radiating in a free field (that is, away from the  
reverberant conditions of an auditorium) by mounting organ pipes atop a 24ft tower out of doors.  
From the three references quoted, spectra corresponding to the four main classes of organ tone can 
be extracted, viz flutes, diapasons, strings and reeds, and this goes some way to providing a 
framework for the  design of a wide range of filters.  To augment this information I have made 
recordings of organ sounds and  analysed them.  A  large amount of information was obtained from  
a  four manual  instrument by Rushworth & Dreaper with some  particularly fine solo stops. 

Recordings were made of organ pipes in situ using omni-directional capacitor microphones with a 
frequency response from below 20Hz to about 20kHz.  Two microphones were used, feeding 
separate channels of a tape recorder with a frequency  response from 35Hz to16kHz (± 2db).  The 
recordings were subsequently replayed monaurally into a high-resolution spectrum analysis system  
with a dynamic range of 60dB.  The reason for using  two microphones and  then summing their 
outputs on replay was to reduce distortion of the spectrum through reflections from the surfaces in 
the auditorium.  Because they set up standing waves, such reflections can result in a significant 
increase or decrease in the intensity of sound of a particular frequency  at  the microphone location.  
By using two microphones there is a reduced likelihood of an identical distorting effect occurring  
at  both simultaneously.  (A better method for averaging out the effects of reverberation would have 
been to use averaging in the frequency domain after phase information had been removed.) 
Recordings were made of  four octavely-related samples from each stop on the organ, and the 
whole exercise has resulted in a library of  some hundreds of pipe spectra. 

The steady-state emission of a pipe is periodic at its fundamental  frequency.  This is the lowest 
frequency present in the spectrum in most cases and it defines the musical pitch of the pipe.  
Because the emitted waveform is periodic, the only other  frequencies  present in the spectrum are  
harmonics or integer multiples of the fundamental; there is virtually no acoustic energy lying 
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between adjacent harmonics.  Certain pipes, however,  possess a significant noise component due  
to  random fluctuations of the air.  In other cases, the  amplitudes and phases of each harmonic 
fluctuate randomly to a significant degree. Both of these effects produce energy that is not confined 
to the harmonic frequencies in the spectrum.  However, it is assumed here, for simplicity, that the 
spectrum of an organ pipe consists only of equally-spaced lines at  the  fundamental and harmonic 
frequencies. 

This structure is shown in Fig. 2, with examples of spectra corresponding to each of the four classes 
of tone.  These have been  normalised to the frequency of the fundamental so that  the abscissae 
represent harmonic numbers (on a logarithmic frequency scale).  

 

Figure 2.  Large number of harmonics in organ pipe spectra means high cost for additive instruments.  

Harmonic 
Claribel 

 Flute 

Open 

 Diapason 
Viol Cornopean 

1 60 60 55 60 

2 29 46 56 58 

3 30 45 57 55 

4 18 35 60 54 

5 19 29 48 53 

6 11 21 49 49 

7 10 26 46 47 

8 5 18 43 42 

9 5 19 47 37 

10 4 12 42 33 

11 4 14 40 27 

12 3 8 34 25 

13 3 5 32 16 
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14 2 2 28 15 

15 2 1 27 10 

16 - 0 26 7 

17 - - 25 9 

18 - - 23 6 

19 - - 22 - 

20 - - 22 - 

21 - - 18 - 

22 - - 20 - 

23 - - 19 - 

24 - - 15 - 

25 - - 20 - 

26 - - 11 - 

27 - - 14 - 

28 - - 13 - 

29 - - - - 

30 - - - - 

 

Table 1. Harmonic amplitudes of various pipe spectra in dB, corresponding to Fig. 2  

All of these spectra contain a large number of harmonics, at least 15, within the dynamic range of 
60dB. This is significant in that it clearly demonstrates that the flute is far from being a single sine 
wave as commonly stated. Nevertheless, as the amplitudes of the harmonics in this spectrum 
decrease rapidly with increasing harmonic number, it is possible to approximate to a reasonable 
flute tone using only a few harmonics.  This is why additive sine wave instruments, which rarely 
have more than nine harmonics available, are able to provide good  flutes, whereas their 
performance at synthesising almost any other type of tone leaves much to be desired.  A glance at 
the remaining spectra in Fig. 2 shows why.  For a subjectively satisfying imitation of these pipe 
tones, one should aim to embrace all harmonics within a dynamic range of about 60dB.  Therefore 
even the Diapason requires about 15 harmonics and the other two spectra need more.  Unless a very  
large number of harmonics is  available in  an  additive instrument,  the only cost-effective way to 
proceed is with the subtractive  approach.  (Whilst  there  are a very  few  additive instruments  that 
have large numbers,  perhaps in excess of one hundred, harmonics available for tonal synthesis, 
these are expensive experimental developments using advanced microprocessor technology and as  
yet they are hardly suitable for  amateur construction.) 

Returning briefly to the imitation of an organ flute stop of the sort illustrated by the spectrum of 
Fig. 2(a), this type of tone is in some ways the most difficult to simulate in spite of the apparent 
simplicity of the spectrum.  Merely designing a filter to produce the same overall spectral features 
often produces a tone that seems somewhat dull and lifeless compared to the  original, especially  
on  A-B  comparison  using  tape  recordings.  Ladner (ref.3 ) made the same point,  and it seems 
that the role  of the  low-amplitude  high-order harmonics is not well  understood.  Sumner  (ref.1)  
reports that physical features such as the "chimney"  in the flute stop of that name are  responsible  
for subtle  formant  bands in the spectrum, though he does not  give further details. 

Passing on to the other sounds, where imitation is much easier than for flutes, consider the 
Diapason. The spectrum shows that the amplitude of the harmonics gradually falls off with 
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increasing harmonic number. The viol, on the other hand, has harmonics that increase in amplitude 
up to the fourth, whereafter they  fall.  This  is the result of a viol pipe being of smaller scale 
(narrower) than a diapason pipe of the same length. 

Finally  the cornopean has a spectrum in which the harmonic energy falls with frequency, though 
the fall is not in excess of 6dB until  harmonics  beyond  the  fifth  are  encountered. The relative  
smoothness of this curve compared to the previous three (in which more scatter is apparent) seems 
to be characteristic of many reed tones. 

The four examples of organ pipe spectra represent the four principal categories of organ tone, and 
there is no reason why essentially the same spectrum should not be used to design filters for several 
footages, thereby producing a diapason chorus or a reed chorus, etc.  The examples given here,  
together with others in the references cited, give a reasonably broad base of data for the 
construction of filters. 

Electrical Waveforms 
In addition to the spectrum of the sound to be simulated, we need that of the source waveform, 
from which the tone filters are fed. It would be a short and simple matter to present the spectra of  
commonly-used  waveforms at this  point,  but several other practical problems require discussion 
first. 

Probably  the easiest waveform to generate is a square  wave.  With  the ready availability of top-
octave synthesiser,  dividers and  envelope-shapers in  integrated-circuit  form, a  complete 
generating system of, say, 84 frequencies (seven octaves) can be contained on one card. 
Unfortunately, the square wave is far from ideal  for  tone-forming, except  in a  few  cases,  
because it contains only the odd-numbered  harmonics, whose amplitudes decrease at 6dB per 
octave (see Fig. 3(a)).  A square wave cannot therefore be used to derive any of the spectra shown 
in Fig. 2 as these contain even harmonics.  It is, however, suitable for use where tones such as a 
stopped diapason or a clarinet are required, in whose spectra the odd harmonics are much more 
prominent than the even ones. 
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Figure 3.  Easy-keying pulse waveforms such as in (a) or (b) are deficient in harmonic content.   

Harmonic Square 
7:1 

pulse 

Saw 

tooth 

1 60 60 60 

2 - 59 54 

3 50 58 50 

4 - 56 48 

5 46 54 46 

6 - 50 45 

7 43 43 43 

8 - - 42 

9 41 41 41 

10 - 46 40 

11 39 47 39 

12 - 47 38 

13 38 46 38 

14 - 42 37 

15 37 37 37 

16 - - 36 

17 35 36 35 

18 - 40 35 
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19 35 42 35 

10 - 42 34 

21 34 41 34 

22 - 38 33 

23 33 33 33 

24 - - 33 

25 32 33 32 

26 - 37 32 

27 32 39 32 

28 - 39 31 

29 31 38 31 

30 - 36 31 

 

Table 2. Harmonic amplitudes of various waveforms in dB corresponding to Fig. 3  

In a square-wave multi-frequency generating  system, it  is relatively simple to generate pulse 
waveforms of different mark-space  ratios.  These possess, in general, both even and odd harmonics  
and the spectrum of a pulse waveform with a 7:1  mark-space ratio has been discussed by David 
Ryder (see  ref. 5);  this special case is of particular interest to those readers who may be building 
his (sine-wave) organ.  The spectrum, Fig. 3(b), shows that certain harmonics are missing.  This  
effect is always obtained  with  pulse waveforms, including the square wave just discussed:  this is 
merely a "pulse" waveform with a  1:1  mark-space  ratio, where  the nulls happen to coincide with 
the even harmonics.  Whilst pulse waveforms again have the desirable advantage of simple 
generation and keying (envelope-shaping), one possible problem concerns the low average energy 
of  a waveform consisting of short  pulses.  This could give rise to noise difficulties at the output of 
the tone filters, as these usually introduce considerable insertion loss. 

The "classical" waveform that is often used when both odd and even harmonics are required is the 
sawtooth.  This has a spectrum containing all harmonics, whose amplitudes decrease at 6dB per 
octave (see  Fig. 3(c)).   Unfortunately, the sawtooth is not particularly economical to generate, and 
once generated it cannot be keyed by the simple non-linear envelope shapers commonly used for  
square or pulse waveforms, without introducing distortion.  One  way  to circumvent this limitation 
is to generate and  key pulse  waveforms (i.e. square waves), and then combine them with 
appropriate  weights so that a staircase waveform is obtained.  This is a good approximation to a 
sawtooth. 

Another approach is to generate and key a single square  wave and then convert it to a sawtooth 
using a discharger circuit of the type shown in Fig. 4.  The square wave is first converted to a series  
of  narrow  pulses  (for  example,  by  differentiation followed  by  rectification) which are then  
used to repeatedly discharge the capacitor C through the electronic switch  S.  In between 
discharges, the capacitor charges exponentially  through R.  A linear ramp is obtained if R is 
replaced by a constant-current source, though for musical purposes this would seldom be required.  
An  exponential ramp produces little significant difference in the spectrum, even at  harmonics as 
high as the  30th.   The source voltage V can be used to achieve envelope shaping during  key attack 
and release.  
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Fig. 4. It is easier to generate and key a rectangular wave and then convert it to a sawtooth wave than to 
operate on the sawtooth.  

Several filters are discussed in the next  article [reproduced here as part 2 below], all designed  
assuming the availability of a sawtooth wave to  feed them with. This has been chosen for the 
following reasons:  

i) Its spectral structure is simple.   Harmonic amplitudes decrease monotonically with increasing 
frequency rather than in the oscillatory fashion of a pulse spectrum.  This results in a filter  
frequency  response that is also much simpler than if  a pulse waveform had been used.  This is 
important because of the comparative ease with which an electrical implementation of  the filter 
can be built.  

ii) A square wave has already been rejected as being unsuitable for all but a few special tones 
(though in these  cases  it  is essential).  

iii) Sawtooth and square waves are available in the  author's instrument.  This meant that a 
subjective judgement could be made as to the effectiveness of a filter design.  In particular, it  
was possible to make A-B comparisons of the electronically-generated sounds against tape 
recordings of the originals.  

Part 2: Design Procedure and Practical Problems  

This part of the article derives frequency responses of tone filters for four organ tones, whose acoustic spectra 
were given in part one.   It completes  the design procedure, discusses the number of filters needed  per stop and 
the combining of tone colours,  and  various other practical points. 

The  frequency  response of the required filter is obtained by subtracting the  sawtooth spectrum 
from the relevant organ  pipe spectrum.   In  practice this merely means that the numbers in Table  
2,  representing the individual harmonic amplitudes, are subtracted one by one from the 
corresponding numbers in Table  1.  The resultant four series of values are presented in Table 3, 
and graphically in Fig. 5.  In all cases the frequency response is represented on a scale that does not 
indicate absolute frequency but is normalised to the frequency of the  first  harmonic or 
fundamental of the original spectra.   To implement a real filter circuit  one needs to first convert 
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the frequency scale back to true frequency values, which immediately begs the question of which  
design frequency is chosen for the filter, a subject treated later.    

 

Fig. 5.  Filter frequency response curves for the tones in Fig. 2.  Dots represent values of the required 
response at the harmonic frequencies as in Table 3.  Full lines are measured frequency responses of actual 
filters, broken lines are Bode plots.  Responses calculated assuming a sawtooth driving waveform.  

Harmonic 
Claribel 

 Flute 

Open 

 Diapason 
Viol Cornopean 

1 0 0 -5 0 

2 -25 -8 2 4 

3 -20 -5 7 5 

4 -30 -13 12 6 

5 -27 -17 2 7 

6 -34 -24 4 4 

7 -33 -17 3 4 

8 -37 -24 1 0 

9 -36 -22 6 -4 

10 -36 -28 2 -7 

11 -35 -25 1 -12 

12 -35 -30 -4 -13 

13 -35 -33 -6 -22 

14 -35 -35 -9 -22 

15 -35 -36 -10 -27 

16 - -36 -10 -29 

17 - - -10 -26 

18 - - -12 -29 

19 - - -13 - 

20 - - -12 - 

21 - - -16 - 
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22 - - -13 - 

23 - - -14 - 

24 - - -18 - 

25 - - -12 - 

26 - - -21 - 

27 - - -18 - 

28 - - -18 - 

29 - - - - 

30 - - - - 

 

Table 3.  Normalised frequency responses in dB of tone filters for four organ tones assuming a sawtooth 
drive waveform corresponding to Fig. 5. 

Also shown in Fig. 5 by the full lines are the frequency responses of four actual filters intended to  
simulate the frequency responses suggested by the discrete  points on the four graphs.  (The circuit  
diagrams of these filters are given in Fig. 6 and they are more fully discussed later).   It  is, of  
course, permissible to draw the frequency response of a real filter as a continuous curve as the filter 
has a defined gain/loss at all frequencies in contrast to the experimentally derived points of Table 3, 
which exist at harmonic frequencies only.  An additional feature of Fig. 5 is the presence of broken 
lines corresponding to Bode plots used in the filter design process.   This is discussed later, but for 
the present a short qualitative discussion of the form of these responses follows as this leads 
naturally on to filter implementation.   It is necessary that the reader is familiar with the amplitude 
versus frequency response of simple filter sections and (where appropriate) their equivalent Bode 
plot representations.   Particularly important are first, second and  third order passive RC networks 
and parallel resonant (LC) sections. 

The claribel flute filter is characterised by a rapid increase in attenuation for the first six or seven 
harmonics, Fig. 5(a), after which the attenuation remains roughly constant at about 35 dB below the 
value at the fundamental frequency.   After the 15th harmonic no further experimental data are 
available.   The nature of the experimental points in this diagram shows why flutes are among the 
most difficult tones to emulate.   It is difficult  to discern a simple trend from the available 
information, though an interesting feature is that the attenuation of the first few even harmonics  is  
consistently higher than at the adjacent odd harmonic frequencies.   This  suggests that the flute 
stop  in question consisted of stopped pipes, though it was not possible to confirm this by an 
examination of the interior of the organ.  Whilst a stopped construction is unusual for claribel 
flutes, this  assumption enabled a filter response to be chosen that was based on the first four or five 
odd harmonic frequencies only; even harmonics were ignored.   This filter consisted of a third order  
passive RC network whose breakpoint was the fundamental frequency.    Driven with a sawtooth  
wave, a reasonably satisfactory flute resulted though the effect when using a square wave was not 
satisfactory.   This is at odds with the strong suggestion from the filter response that odd harmonics 
ought to predominate.   It seems that the proportion of odd to even harmonics is critical for flutes,  
and experiments with other filter configurations in which particular harmonics were selectively  
reinforced confirmed this.   The simple filter just described makes no attempt to emulate the part of 
the frequency response suggested by frequencies above the tenth harmonic.  Even though such 
high-order structure may be crucial to the production of a good flute tone as previously  discussed,  
it was found difficult to derive a straightforward way of doing this that also yielded subjectively 
good results. 

Turning now to the open diapason, the response fits a second order Bode plot very nicely,  with the 
break point occurring at a frequency equal to 2.6 times the fundamental.  The actual response of 
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such a filter (full curve) fits the experimental points well, with only a few reaching a maximum 
divergence of  6 dB.   Subjectively this simple diapason filter produced entirely acceptable and  
realistic sounds that were  "hard  and  bright" rather than "dull and woofy".  A complete diapason 
chorus, from a 16 foot double diapason to a three rank mixture, was built up using a total of 32 such 
filters and the effect had something of the tonal excitement of a similar flue chorus on a pipe organ. 

The experimental points for the viol filter suggest a bandpass characteristic, and they are again well 
approximated by the Bode plot illustrated in the diagram.  This consists of a 6 dB/octave rise 
changing to a 12 dB/octave fall,  the transition between the two being at the fifth harmonic of the  
fundamental.  Such a filter has the true response illustrated by the full curve.  The subjective verdict 
on this filter was again favourable, though it was too "stringy" for some tastes.  This is possibly due 
to the fact that this filter was derived from Boner's data (ref. 2) in which measurements were made 
in a free field with the microphone close to the pipe. In an organ, a viol rank would be placed well 
inside the organ case and almost certainly inside a swell box.  Therefore significant high frequency 
attenuation would result, with the tone of the pipe sounding less "stringy" to a listener in the 
auditorium. 

Finally, the cornopean data are again strongly suggestive of a bandpass characteristic.  In this case 
the filter was implemented using a parallel resonant circuit tuned to the  fifth harmonic with a Q of 
about 2.   To achieve the asymmetry of the response, which rapidly falls off above resonance,  a 
third order RC filter was also used breaking at the eighth harmonic.   The reasons for using this 
particular bandpass filter configuration instead of one  akin  to the viol are given in the next  
section.   For the present the actual response is seen to fit the experimental values closely.  The  
effect of this filter was a convincing bright reed tone, definitely typical of a cornopean or trumpet 
rather than of a close-toned tromba or tuba.  Again, a family of such filters was built with 
worthwhile results.   The unique tone of an organ reed pipe seems, in part at least, to be due to an 
harmonic structure that is relatively constant in amplitude up to an harmonic order between the fifth 
and tenth, depending on the particular  tone.  After this frequency the amplitude falls off rapidly;   
this falling characteristic is reflected in the filter response.   It is therefore essential to copy the  
"asymmetrical resonance curve" of the filter, as without the rapid attenuation above resonance the 
effect is completely synthetic and quite unlike the original. 

Hardware Realisation 
Filter responses need not be matched exactly to the calculated values at each harmonic frequency of 
the driving waveform.  These points originate from experimental measurements in which a  large 
number of variables, most of them uncontrollable, affect the results such that divergences of a few  
dB can be neglected provided they are random rather than noticeably systematic. 

Flue pipe tones can nearly always be well approximated by the use of a simple passive RC filter: 

Flutes generally need a third order low pass system 
Diapasons generally need a second order low pass system 
Strings generally need a bandpass system  

Circuit  examples of these types of filter are given in Fig. 6(a), (b) and (c).  
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Fig. 6.  Filter circuits giving the required frequency responses of Fig. 5.  Inductor in (d) can be realised 
electronically.  

Reeds can nearly always be well approximated by implementing the asymmetrical bandpass 
characteristic previously described.  It is usually found that the Q of the hump in this bandpass is 
significantly greater than unity for reeds, whereas for strings (which also require a bandpass) the Q 
tends to be less than this.  Therefore, whilst a simple RC passive bandpass filter can be used for 
strings as noted above, a resonant circuit or its equivalent is  usually  necessary for reeds.   If a 
parallel LC  circuit  is used,  as in the example in Fig. 6 (d), the rapid roll-off on the high frequency 
side of the resonant peak can be achieved by using an additional RC network.  In Fig. 6 (d) this 
network is of third order. 

The majority of organ tones are best derived from a sawtooth wave, or one that has both odd and 
even harmonics.   However, there are some important exceptions where a waveform containing 
only the odd harmonics (e.g. a square wave) is preferable if  not actually essential.  A partial list of 
stops where odd harmonics predominate might have names such as stopped diapason, lieblich 
gedackt, bourdon (all stopped flue pipes), and clarinet, vox humana, cromorne (reed pipes with 
cylindrical resonators). 

These design guidelines just given apply to the filter circuits in Fig. 6.  For flue pipe tones, the 
Bode plot of an appropriate passive network is first matched to the experimental points and then the 
corresponding filter is implemented.  This procedure requires a certain amount of experience and 
judgement;  for the first example turn to the open diapason frequency response in Fig. 5(b).  The 
Bode plot best suited to the experimental  data appeared to be a second order system in which there 
is first a horizontal line (zero slope) followed by a line of slope -12 dB/octave.  The  breakpoint is 
the frequency at the point of intersection of the two line segments.  The -12 dB/octave part of the 
response was drawn so that it fitted the slope of the experimental data as well as possible as judged 
by eye, then the breakpoint was adjusted bearing in mind that the actual response at this frequency 
will be 6 dB less in amplitude.   A breakpoint of 2.6 times the fundamental frequency resulted.  The 
frequency response of the filter is given by the full line in Fig. 5(b) and Fig. 6(b) gives the circuit.  
This corresponds to the particular form of the Bode plot in that the two sections have the same time 
constant (RC product) and they are arranged such that they do not mutually  load each other.   (It is 
usually possible to avoid buffer amplifiers by choosing the component  values to avoid mutual 
interaction).  The circuit was designed for a fundamental sawtooth  frequency of 311 Hz, so that 
each section has a time constant of 
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RC = 106 / ( 2 x  311 x 2.6)

 
where  R is in kohm and C in nF.   The question of how to  choose the design frequency of the filter 
is  deferred until later as it raises some important practical issues. 

The  flute  filter of Fig. 6(a) was designed in exactly the same way, though in this case the 
frequency response data of Fig. 5(a) offered less precise guidance as to the form that the Bode plot 
should take.  A third order system was used, matched to the first few  odd harmonics for the 
reasons stated previously.  The three time constants were again equal and the three RC sections  
were again not  buffered.  The breakpoint was chosen to be the fundamental frequency which in 
this case was 370 Hz.  There would have been little point in using a breakpoint lower in frequency 
than the fundamental;  this would merely have resulted in greater insertion loss with little effect on 
the tone quality.   

For the viol frequency response, Fig.  5(c), there were two segments clearly indicated, forming a 
Bode plot with slopes -6 dB/octave and -12 dB/octave.  The breakpoint turned out to be at the fifth 
harmonic.  This is a simple bandpass filter formed from three RC sections in which one is high pass 
and the other two low pass.  The  particularly simple form of the Bode plot  means, again, that the  
time constants are all equal and that the sections must not interact.  Such a circuit is shown in Fig. 
6(c) and was designed for optimum operation at 311 Hz. 

Reed tones generally require bandpass characteristics with Q's not less than 1.5 and often more, 
which implies the use of circuits such as LC resonant sections.   The higher the Q, the more "reedy"  
the tone and the smaller the frequency range over which the circuit is effective.  A Q in excess of 
three or four is seldom required for the imitation of organ reeds.  The cornopean frequency 
response in Fig. 5(d) has a clearly defined resonance peak at the fifth harmonic, and a Q of about  
1.5 is implied by the locus of the experimental points below resonance.  To achieve the rapid 
attenuation above resonance an additional roll-off of about -22 dB/octave starting at the eighth  
harmonic is also indicated.  This result was obtained after a certain amount of juggling with ruler 
and pencil on the original graph points.   The filter constructed used a resonant circuit with a Q of 2 
rather than 1.5 because it sounded better, and a roll-off of -18 dB/octave instead of -22 dB/octave 
for practical reasons.  A version of this circuit designed for a 262 Hz sawtooth is shown in Fig. 6 
(d), and its frequency response is the full curve in Fig. 5(d).  The first two and the final RC sections 
produce a slope of -18 dB/octave at the eighth harmonic, and the central LC section is responsible 
for the resonant characteristic.   

A parallel tuned circuit has to be driven and terminated so that its  Q is not significantly affected by 
the adjacent circuitry.  The terminating impedance can simply be a sufficiently  large resistor which 
in this case is also used as an element of one of the low pass sections.  The source resistor feeding 
the resonant circuit must then be chosen according to the following criteria.  It must not appreciably 
load the preceding RC section nor must it reduce the Q of the resonant circuit.  Hence its value 
must be as high as possible.  But the insertion loss of the complete filter is  influenced by the value 
of this source resistor because the effective resistance of the LC section at resonance equals Q2R 
where R is the equivalent resistance of the inductor.  Hence the source resistor and the LC section 
itself form a potential divider that controls the amount of signal handed on to the rest of the circuit.  
For this reason the value of the source resistor should be as low as possible. 

The circuit in Fig. 6(d) thus contains a certain amount of compromise, though mainly in the 
interests of economy.  If total component cost is of no account the various sections of the filter can 
be buffered using active devices thereby easing  the design process.  Such a course seems scarcely 
worthwhile when it is  possible to approximate the desired response as well as is indicated by Fig. 
5(d). 
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In the interests of simplicity it has so far been implied that the resonant circuit was constructed with 
a wound inductor.  This was not the case since an electronic inductor was synthesised using a 
simple circuit, Fig. 7.  The advantages are that the filter can be readily adjusted until a subjectively 
optimum effect  is produced;  it is much cheaper than its wound counterpart, consisting only of two 
resistors, a small capacitor and a cheap operational amplifier; and it is much less  bulky.  Design 
equations are as follows: 

L =  QR2  /  2 f

 

where f is the resonant frequency.  L is in Henrys, R in ohms and f in Hz. 

C = L  / R1R2  

C is in Farads, L in Henrys and R1, R2 in ohms.  Suitable values for R1 and R2 are 82k and 1k 
respectively. 

The value of the parallel capacitor C' required to tune the circuit to f is 

                          
C' = 1  / 4 2f2L 

C' is in Farads, f in Hz and L in Henrys. 

  

Fig. 7. Simple electronic inductor realisation using an op-amp where C is the tuning capacitor. 

The final version of the cornopean filter using an electronic inductor based on the above is in Fig. 
8. 

 

Fig. 8. Cornopean reed filter using synthesised inductance as alternative to circuit of Fig. 6(d). 
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Qualitatively at least, Fig. 5(d) is suggestive of a Q-enhanced Sallen and Key active filter response, 
though in practice this alone would not achieve the rate of attenuation required above resonance   
and additional sections would be required.  Nevertheless the use of this type of circuit is a distinct 
possibility instead of the parallel LC circuit used here for those wishing to try it.  

How Many Filters per Stop ? 
A single tone filter, implemented at one design frequency, will not produce the same tonal effect 
across an entire keyboard which (in the case of five octaves) might represent a frequency range of  
32  :  1.  Yet there is evidence in favour of using single filters when cost is paramount:  the single 
filter approach often produces subjectively reasonable results.  In my experience this statement is  
true for flue pipe tones that are simulated using simple low pass filters (flutes and diapasons) where 
an effective range of  three or four octaves can be obtained without difficulty.  Beyond this these 
tones begin to sound unnaturally stringy in the bass and too characterless in the treble, and in 
addition there is an overall reduction in amplitude when going from  low to high notes.  This last 
problem can be mitigated by grading the isolating resistors that are nearly always found in the 
keying system. 

There are two reasons why a single low pass filter has such a large effective frequency range.  First, 
it is easy to show that if the filter characteristic and the source waveform both approximate to linear 
slopes, not necessarily identical, over a sufficiently large frequency range then the relative 
harmonic proportions in the output signal remain constant over this range.  There is also an overall 
amplitude variation that can be dealt with as previously described.  These approximations are valid 
for the claribel  flute filter and the sawtooth spectrum already discussed, and also for the open 
diapason though to a lesser extent.  The second reason why a single filter is usable in these cases is 
that to achieve a uniform acoustic output, the pipes in a  real  diapason or flute stop are scaled so 
that they have a relatively larger proportion of higher harmonics in the bass than in the treble.  This 
effect is the same as that produced by driving a single flute or diapason filter over a wide frequency 
range. 

With other tones (strings and reeds) an effective range of  only two octaves or less  is usual because 
of the more selective frequency response of the filter networks.  Beyond this range the effect  is 
artificial, particularly in the bass where the stops sound "sizzly" and thin.  There is little that can be  
done in these cases except to use multiple filters per stop, each one designed to operate over a 
particular segment of  the  keyboard.  The  limiting extreme, of course, is to employ one filter  per 
note, a tour-de-force that has certain advantages in spite of the enormous component count.   The 
advantages stem from the  ability to regulate the tone quality and loudness on a note-by-note basis,  
and the audible "breaks" between filters that can be troublesome when a lesser number is used do 
not exist.  However, entirely adequate results can be achieved using different filters for each half-
octave; indeed even this is usually an overkill.  I have built a classical instrument of 36 speaking 
stops all of which employ only four filters, and the result is most satisfactory especially with regard 
to features such as the sound of reed choruses at the bass end of the keyboard.   The method used to 
combine the outputs of the filters comprising one stop is illustrated in Fig. 9.  Each is terminated in 
a resistor R'  that can be used to regulate its amplitude   Judicious variation of the  relative  
amplitudes is useful in hiding the breaks between adjacent pairs of filters, yet another 
psychoacoustic feature of the auditory system that works in our favour.  Overall gain variation is 
provided by making part of the negative feedback resistor R variable. 
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Fig. 9. Method for combining the outputs of a number of tone filters corresponding to one stop.  R controls 
the regulation of the stop across the keyboard, R controls the overall amplitude of the stop.  

More Practical Points 
All of the filters discussed here must be driven from a low impedance source, in practice a few tens 
of ohms, and terminated in a high impedance, at least five times greater than the impedances  
involved in the final stage of the filter.  Straightforward operational amplifier techniques are 
suitable here. 

A pronounced change can be imparted to particular tones if only one or two harmonics are 
selectively augmented.  For  example, increasing the level of the third harmonic in the claribel 
flute, Fig. 2(a), changes the tone to that of quite a good lieblich gedackt. Similarly, diapasons and  
flutes can be distinctly brightened by augmenting the second harmonic.  In each case this can be 
done by borrowing the appropriate sawtooth wave from the multiple keying system that usually 
exists, in which several frequencies are switched simultaneously for each note.  The additional 
frequencies are combined in the filter simply by providing more input resistors, as in Fig.10.  This 
shows the claribel flute filter together with an additional input which is supplied with a sawtooth  
wave at the same amplitude as the existing one but at three times the frequency, i.e. at the interval 
of a twelfth above the note being keyed.  The twelfth corresponds to 2 2/3 feet in "footage" 
nomenclature if the actual stop is  of eight foot pitch.  
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Fig. 10. Converting the Claribel Flute into a Lieblich Gedackt by augmentation of the third harmonic.  

  Three points to remember: 

It is important that the impedance of the sawtooth wave sources should be low, otherwise 
incorrect summation will result. 
The parallel combination of the various input resistors must approximate to the resistance 
calculated for the original filter. 
It is not necessary that the frequency relationships between the  fundamental and the augmented 
harmonics be mathematically exact.  This makes it possible to borrow the required harmonics 
from an  equally-tempered tone generating system.   Such borrowing can only be done to a 
limited extent;  some intervals will be grossly out of tune though in the case of the twelfth the 
effect is not serious.  For all octavely - related intervals, of course,  this is irrelevant.  A certain 
amount of trial and error is required to achieve the desired result by this means.  

Many organs use a single generator system from which all tones are derived. This means that all 
stops of the same footage are fed with the same waveform when a given key is depressed, and the 
various signals emerging from the tone filters are then usually electronically recombined before 
being amplified and fed to a loudspeaker system.  Take care that filters do not  introduce 
inadvertent phase shifts due to the indiscriminate use of inverting amplifiers within the filter itself.   
Such amplifiers might have been used for buffering purposes.  Without first designing the tone 
forming system as a whole and taking account of detailed points such as this, the ability to add 
stops one to another will be adversely affected.  Buffers are therefore best implemented using non-
inverting amplifiers, voltage followers for example.  The  problem of combining tone colours is  
further considered below. 

The construction of analogue filter circuits for most  purposes usually involves close-tolerance 
components, and the free use of resistors from the E24 range in these articles might imply that the  
same applies in this case.  These values were used simply because they were available;  for most 
purposes resistors from the 5% E12 range should be adequate.  Capacitors in active filters, e.g. the 
synthetic inductor circuits, should be at least 5%  but elsewhere 10% should prove satisfactory.   
The object is not to produce  a highly precise scientific instrument but to reproduce musical effects 
in a context where 3 dB in amplitude (around 30%) is fortunately of little significance. 
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Combining Stops 
Regardless of deliberately introduced phase inversion, filters normally produce a certain amount of  
phase shift, usually frequency dependent.  With a common generator system, in which the same  
waveform is split into several paths through various filters before being recombined and amplified,  
there is bound to be a degree of emphasis or attenuation of particular harmonics in the final signal.   
This has the practical effect that the result of adding stops will be the production of a composite 
sound that is not necessarily the subjectively expected result of adding the individual tone colours.  
The effect is most noticeable for stops of the same footage, and if the problem is troublesome then 
various remedies can be used.  The best technique is to have a multi-rank generator system in 
which there are as many ranks as stops that are likely to be combined.  The various ranks are not 
phase locked to each other but must run independently.  Whilst there are various technical problems 
inherent in this  approach, not  to mention cost, the chorus effect of the result can rival that of the 
pipe organ and it is worthwhile if economics allow.  The other method, less effective but still  
expensive, is to retain a single generator system but only allow recombination of the filter outputs 
to occur acoustically through the use of a multiplicity of sound channels.  Electronic "chorus" can 
also be judiciously applied to each channel to enhance the effect. 

The combining problem is sometimes exaggerated, and a cost-effective compromise is obtainable 
at minimal expense simply by applying a few artistic guidelines when developing the specification  
of a new instrument.   In normal pipe organ registration, that  is, the art of selecting stops to achieve 
a particular tonal effect,  it is preferable to minimise the number of stops of the same footage that 
are used.  Even with the pipe organ, which has the ultimate in chorus effects owing to its huge 
variety of non-synchronised tone sources, it is inartistic to pile tone on tone when one or two 
carefully chosen stops would suffice.  When major tonal build-ups are required this should be 
achieved by adding stops of different footages, and exactly the same guidelines apply to an 
electronic organ of  whatever sort though particularly if it has a common generator system.  In this 
case the addition of a 4 foot stop to an 8 foot one introduces a new harmonic series that only 
interferes, in the technical sense, with half as many harmonics in the basic 8 foot tone as would be 
the case if a second 8 foot stop had been added.  The resultant tone is much more realistic in  
general.  The only expense involved in following this principle is that the single generator rank has  
to be extended upwards by the  appropriate number of octaves to cater for the extra upper work 
present in the stop list, and the keying system is made correspondingly more complex.  

It might be thought that adjustable filters can be used in the filter design process to quickly arrive  
at a subjectively satisfactory result simply by twiddling knobs.   A useful configuration, it might be 
argued, would be a resonance filter module as used in synthesisers in which the tuned frequency 
and Q are independently variable through the use of state variable techniques.  This approach has 
been eschewed as it represents a return  to the total empiricism that negates the design methodology 
outlined.  If it is possible to calculate a frequency response then the starting point should be a filter  
that approximates this response in a reasonably cost-effective manner. This does not disallow small 
changes to the prototype circuit  to secure  a better result, but too much dabbling will quickly lead 
the ear in a false direction that becomes all too obvious if an A-B comparison with the original 
sound is subsequently attempted.  If it is impossible to achieve a satisfactory simulation of the 
desired sound then the original experimental data should be suspected as being unreliable, and an 
attempt to obtain new data should be made.  
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